Linoleic acid is required for the formation and maintenance of the epidermal barrier, but most of the current in vitro keratinocyte culture systems are linoleic acid-deficient. The aim of the present study was to examine the efficiency of linoleic acid uptake in human keratinocyte cultures grown under submerged and air-exposed conditions in serum-free medium. The water-insoluble linoleic acid was bound to carrier molecules (cyclodextrin or bovine serum albumin). Comparable results were obtained with home-made and commercially available linoleic acid complexes. In the submerged cultures, the increase of the linoleic acid medium concentration (ranging from 0 to 20 microg/ml) resulted in a gradual increase in the linoleic acid cellular content, which exceeded 1.4 times the value found in native epidermis when the highest concentration of linoleic acid was used. The addition of linoleic acid did not alter the profile of the other epidermal fatty acids, with the exception of oleic acid, which decreased in parallel with the increasing linoleic acid content. While the content of linoleic acid found in phospholipids was similar to that in native epidermis, a large excess of linoleic acid was detected in triglycerides, the synthesis of which was markedly increased in cultures grown submerged in medium containing higher concentrations of linoleic acid. Under air-exposed conditions, the dermal substrate used seemed to be the most limiting factor for efficient linoleic acid supplementation. A low linoleic acid cellular content was detected when an inert filter was used. De-epidermized dermis was found to be the most permeable substrate for linoleic acid complexes. The cellular linoleic acid content increased in a parallel with the increasing linoleic acid concentration (ranging from 4 to 30 microg/ml), but the overall amount incorporated was lower than that in submerged cultures. The content of linoleic acid in the phospholipid and ceramide fractions isolated from reconstructed epidermis grown under air-exposed conditions was close to that of native epidermis, but the triglycerides remained abnormally enriched in linoleic acid, indicating persistence of some anomalies in epidermal lipogenesis in vitro.