Influence of initial collagen and cellular concentrations on the final surface area of dermal and skin equivalents: a Box-Behnken analysis.

Our laboratory has been involved in finding optimal conditions for producing dermal and skin equivalents. As an original approach, a Box-Behnken experimental design was used to study the effects of the initial collagen and fibroblast concentrations and the initial gel thickness on the contraction of dermal and skin equivalents. The final surface area of dermal equivalent varied significantly with the initial concentration of collagen and fibroblast, whereas the initial thickness of gel had no appreciable effect on the contraction of the dermal equivalent. When keratinocytes were grown on these dermal equivalents they produced a very severe contraction, to an extent that all skin equivalents had a similar final surface area. This severe contraction was independent of collagen and fibroblast concentrations. Models for the prediction of the final percentage contraction of dermal and skin equivalents as a function of the initial concentration of collagen, the logarithm of fibroblast concentration, and the initial gel thickness were obtained and analyzed. Keratinocytes grown at the lowest seeding density did not contract the equivalents. However, histologic analysis has shown an incomplete coverage by these cells of the equivalents. The extensive contraction of the skin equivalent presenting adequate morphology is a major drawback toward its clinical utilization for burn wound coverage

In vitro test approach

1990 In Vitro Cell Dev Biol. 1990 Oct;26(10):983-90. 1990 Oct;26 ;