Cultured epidermal skin has become an adjunctive therapy for treatment of major burn injuries, but its effectiveness is greatly limited because of destruction by microbial contamination. To evaluate candidate antimicrobial agents for use with cultured skin, a combined cytotoxicity-antimicrobial assay system was developed for determination of toxicity to cultured human keratinocytes and fibroblasts and for determination of susceptibility or resistance of common burn wound organisms. Candidate agents including chlorhexidine gluconate, polymyxin B, mupirocin, sparfloxacin, or nitrofurazone were tested separately for inhibition of growth of human cells and for inhibitory activity to microorganisms with the wet disk assay. The data showed that (1) chlorhexidine gluconate (0.05%) was uniformly toxic to both cultured human cells and microorganisms; (2) nitrofurazone (0.02%) had dose-dependent toxicity to human cells and limited effectiveness against gram-negative microorganisms; (3) sparfloxacin (30 micrograms/ml) had low toxicity to human cells and retained antimicrobial activity against both gram-positive and gram-negative bacteria; (4) polymyxin B (400 U/ml) was not toxic to human cells and had intermediate effectiveness on gram-negative bacteria; and (5) mupirocin (48 micrograms/ml) had no toxicity to skin cells and had uniform effectiveness against Staphylococcus aureus including methicillin-resistant Staphylococcus aureus. Selection of topical antimicrobial drugs by these assays may improve effectiveness of cultured skin for burns and may be used to control other surgical wound infections