Cell suspensions of human keratinocytes seeded onto cell culture inserts may undergo terminal differentiation in the absence of fibroblasts. Among the parameters that control these morphogenic events, exposure to air and the composition of the culture medium were investigated. In the latter case, three media were considered DMEM:Ham's F12, MCDB 153, and keratinocyte SFM medium at equivalent calcium (1.5 mM) and fetal calf serum (5%) concentrations. Immunochemical methods and transmission electron microscopy show that cells cultured in DMEM:Ham's F12 medium, and then raised at the air-liquid interface, form a basal layer plus suprabasal cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasal keratinocyte layers show morphologies that resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-filaggrin granules. When the cultures are kept submerged, the keratinocytes show occasional keratohyalin granules and are connected by fewer desmosomes. Additionally, no proper stratum corneum is formed. In keratinocyte SFM medium and MCDB 153, cultures raised at the air-liquid interface are not able to form an epithelium of normal architecture and do not express terminal differentiation markers. Differentiation is initiated, however, since desmosomes and bundles of keratin filaments appear; on the other hand, filaggrin is not expressed even after 28 d in culture. Membrane-bound transglutaminase is expressed throughout the entire suprabasal compartment in MCDB153 and DMEM:Ham's F12 media but never appears in keratinocyte SFM medium. These studies show the relative independence of epidermal differentiation program to the composition (including the calcium concentration) of the media contacting the dermis and filling the extracellular space.(ABSTRACT TRUNCATED AT 250 WORDS)