Improvement of the experimental setup for skin absorption screening studies

Percutaneous penetration studies are usually performed in human skin samples set up in a Franz cell device. The ability to perform these studies may depend on the availability of skin samples. Reconstructed skin models are an interesting alternative to overcome such limitations but are less easily mounted in diffusion cell devices. Previous data showed that EPISKIN was a highly performing model to carry out such studies. However, the setup in a PermeGear cell device is time consuming and therefore unsuitable for screening purposes. Another approach could be using EPISKIN in its cell culture insert. The aim of this study was to compare cutaneous penetration of chemicals applied to EPISKIN samples in a PermeGear cell versus in their own insert. Eight chemicals having widely different chemical structures and penetration potentials were studied. Six test chemicals showed a similar penetration level in both devices. Using the PermeGear cell device, the penetration level was overestimated for the other 2 tested chemicals. The results demonstrated that percutaneous studies with EPISKIN samples could be easily performed using the insert setup. The EPISKIN model has been greatly improved in the recent years and it is now possible to develop screening tests for the evaluation of skin penetration with a higher reliability.

In vitro test approach

2008 Skin Pharmacology and physiology
L'Oréal Recherche